-  适用场景:linux系统,已经搭建好kubernetes1.4及以上的集群,没有配置CA等认证,已经搭建DNS,其它情景仅作参考。 
-  如果还没有搭建DNS,请参考kubernetes中部署DNS搭建。 
-  相关的yaml文件已经上传到本人的github,需要用到的国外镜像也一并被我替换成了阿里云镜像,可直接下载使用 
请根据以下步骤一步步开始搭建spark集群
 1.创建spark的namespaces
 a.介绍:
 Kubernetes通过命名空间,将底层的物理资源划分成若干个逻辑的“分区”,而后续所有的应用、容器都是被部署在一个具体的命名空间里。每个命名空间可以设置独立的资源配额,保证不同命名空间中的应用不会相互抢占资源。此外,命名空间对命名域实现了隔离,因此两个不同命名空间里的应用可以起同样的名字。
 文件namespace-spark-cluster.yaml内容:
 apiVersion: v1 kind: Namespace metadata:   name: "spark-cluster"   labels:     name: "spark-cluster" 
 其中规定了一个命名空间名为:"spark-cluster"
 b.创建
 $ kubectl create -f namespace-spark-cluster.yaml 
 c.使用该Namespace:  (${CLUSTER_NAME}和${USER_NAME}可在kubeconfig文件中查看)
 $ kubectl config set-context spark --namespace=spark-cluster --cluster=${CLUSTER_NAME} --user=${USER_NAME} $ kubectl config use-context spark 
  - 这样接下来创建的Pod和service(或任意资源)都是在这个命名空间(spark-cluster)下了
2.创建spark-master的Rc
 a.文件spark-master-controller.yaml内容:
 kind: ReplicationController apiVersion: v1 metadata:   name: spark-master-controller spec:   replicas: 1   selector:     component: spark-master   template:     metadata:       labels:         component: spark-master     spec:       containers:         - name: spark-master           image: registry.cn-hangzhou.aliyuncs.com/sjq-study/spark:1.5.2_v1           command: ["/start-master"]           ports:             - containerPort: 7077             - containerPort: 8080           resources:             requests:               cpu: 100m 
  b.创建
 $ kubectl create -f spark-master-controller.yaml 
 c.查看验证
 $ kubectl get pods |grep spark-master spark-master-controller-rz1hd     1/1       Running            0          5h 
  -  已经running! 
-  再查看master的日志看是否有报错的问题: 
$ kubectl logs spark-master-controller-rz1hd -n spark-cluster 17/12/20 07:30:36 INFO Master: Registered signal handlers for [TERM, HUP, INT] 17/12/20 07:30:37 INFO SecurityManager: Changing view acls to: root 17/12/20 07:30:37 INFO SecurityManager: Changing modify acls to: root 17/12/20 07:30:37 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(root); users with modify permissions: Set(root) 17/12/20 07:30:38 INFO Slf4jLogger: Slf4jLogger started 17/12/20 07:30:38 INFO Remoting: Starting remoting 17/12/20 07:30:38 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkMaster@spark-master:7077] 17/12/20 07:30:38 INFO Utils: Successfully started service 'sparkMaster' on port 7077. 17/12/20 07:30:38 INFO Master: Starting Spark master at spark://spark-master:7077 17/12/20 07:30:38 INFO Master: Running Spark version 1.5.2 17/12/20 07:30:39 INFO Utils: Successfully started service 'MasterUI' on port 8080. 17/12/20 07:30:39 INFO MasterWebUI: Started MasterWebUI at http://10.1.24.4:8080 17/12/20 07:30:39 INFO Utils: Successfully started service on port 6066. 17/12/20 07:30:39 INFO StandaloneRestServer: Started REST server for submitting applications on port 6066 17/12/20 07:30:39 INFO Master: I have been elected leader! New state: ALIVE 
 从日志中可以看出spark的master已经创建成功并成功成为leader和开放了8080端口作为Master的UI
 3.创建spark-master的sercives
 a.文件spark-master-service.yaml内容
 kind: Service apiVersion: v1 metadata:   name: spark-master spec:   ports:     - port: 7077       targetPort: 7077       name: spark     - port: 8080       targetPort: 8080       name: http   selector:     component: spark-master 
 b.创建
 $ kubectl create -f spark-master-service.yaml 
 c.查看验证
 $ kubectl get svc |grep spark-master spark-master     192.168.3.239   <none>        7077/TCP,8080/TCP   5h 
 4.创建spark-worker的Rc
 a.文件spark-worker-controller.yaml内容
 kind: ReplicationController apiVersion: v1 metadata:   name: spark-worker-controller spec:   replicas: 3   selector:     component: spark-worker   template:     metadata:       labels:         component: spark-worker     spec:       containers:         - name: spark-worker           image: registry.cn-hangzhou.aliyuncs.com/sjq-study/spark:1.5.2_v1            command: ["/start-worker"]           ports:             - containerPort: 8081           resources:             requests:               cpu: 100m 
  - 其中镜像已经替换成了阿里云镜像,可直接下载使用
- 定义了3个worker节点,实际需要多少个可以直接修改replicas:
- cpu和mem也可根据实际需要进行修改
b.创建
 $ kubectl create -f spark-worker-controller.yaml 
 c.查看验证
 $ kubectl get pods |grep spark-work spark-worker-controller-djk50     1/1       Running            0          2h spark-worker-controller-qf1p3     1/1       Running            0          3h spark-worker-controller-w0kzw     1/1       Running            0          3h 
  到这为止spark的集群就已经搭建成功了!
 可以通过查看master POD的IP+port或者master-servixes的IP+port来访问master的UI  
 
 可以通过查看worker POD的IP+port来访问worker的UI
 
 但此时mater和worker节点的ui都是单独的,没法在一个UI里实现查看,点击worker UI里的==back to master==也是返回不来master的UI的。并且此时集群外也无法访问我们的spark集群。
 实现多UI合并和对外开放问题见   kubernetes中搭建spark集群 (二)
 声明!以上内容纯属个人原创!转载请标注出处,谢谢!
 如果本文有帮助到你,希望能动动小手点个赞。 如有错误请多指正!如有雷同!纯属巧合!