掌握python机器学习-读书笔记4(特征选择)


声明:本文转载自https://my.oschina.net/sizhe/blog/1588135,转载目的在于传递更多信息,仅供学习交流之用。如有侵权行为,请联系我,我会及时删除。

8 机器学习中的特征选择

8.1 特征选择

特征选择是机器学习实践中的一步, 帮你在所有特征中选择对结果贡献最多的特征。 显然, 使用不相关数据会减少模型的精确性, 尤其是线性算法:线性回归, 逻辑回归。为什么,因为线性算法一般使用梯度下降来寻找最优值, 那么如果特征无关, 方向就有可能误导。- 我的理解。

以下是三个好处:

  • 减少过拟合。 这个话题其实比较大。 要理解什么是过拟合, 就是模型过于贴近训练集, 导致了泛化能力很差。 吴恩达课上有一个图可以说明过拟合和欠拟合的区分, 这部分可能后续继续详细阐述。
  • 提高精确性。 更少的无效数据意味着模型精确性的提升。
  • 减少训练时间。 数据少了自然运算时间短了。

8.2 单变量选择

scikit-learn提供了SelectKBest类可以用来根据一些统计的测试来选择出一些数量的最有效的特征。 以下例子就是用了chi-square test 卡方检验来进行非相关性分析,选出了4种最相关的特征。

首先, 这个是为了分类变量。输入是这个特征和分类结果。 原理略, 卡方值越大,越不符合;卡方值越小,偏差越小,越趋于符合,若两个值完全相等时,卡方值就为0,表明理论值完全符合。

对于分类的检验算法, 有 : chi2, f_classif, mutual_info_classif 对于回归呢, 有: f_regression, mutual_info_regression

# Feature Extraction with Univariate Statistical Tests (Chi-squared for classification) from pandas import read_csv from numpy import set_printoptions from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 # load data filename = 'pima-indians-diabetes.data.csv' names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(filename, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] # feature extraction test = SelectKBest(score_func=chi2, k=4) fit = test.fit(X, Y) # summarize scores set_printoptions(precision=3) print(fit.scores_) features = fit.transform(X) # summarize selected features print(features[0:5,:]) 
[  111.52   1411.887    17.605    53.108  2175.565   127.669     5.393    181.304] [[ 148.     0.    33.6   50. ]  [  85.     0.    26.6   31. ]  [ 183.     0.    23.3   32. ]  [  89.    94.    28.1   21. ]  [ 137.   168.    43.1   33. ]] 

8.3 递归特征消除法 RFE

递归特征消除呢就是说每次把对结果最没有用的这个特征去掉。 然后如此继续。 最终得到自己想留下的特征数量。 这里有一个问题, 采取何种算法, 如何的标准来判断这个重要性? 为什么用逻辑回归, 也有SVC 支持向量回归? 这样做的好处是什么呢, 就是为了消除一下, 那么消除好还是不消除好呢。

递归特征消除的主要思想是反复的构建模型(如SVM或者回归模型)然后选出最好的(或者最差的)的特征(可以根据系数来选),把选出来的特征放到一遍,然后在剩余的特征上重复这个过程,直到所有特征都遍历了。这个过程中特征被消除的次序就是特征的排序。因此,这是一种寻找最优特征子集的贪心算法。

RFE的稳定性很大程度上取决于在迭代的时候底层用哪种模型。例如,假如RFE采用的普通的回归,没有经过正则化的回归是不稳定的,那么RFE就是不稳定的;假如采用的是Ridge,而用Ridge正则化的回归是稳定的,那么RFE就是稳定的。

# Feature Extraction with RFE from pandas import read_csv from sklearn.feature_selection import RFE from sklearn.linear_model import LogisticRegression # load data filename = 'pima-indians-diabetes.data.csv' names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(filename, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] # feature extraction model = LogisticRegression() rfe = RFE(model, 3) fit = rfe.fit(X, Y) print("Num Features: %d") % fit.n_features_ print("Selected Features: %s") % fit.support_ print("Feature Ranking: %s") % fit.ranking_ 
Num Features: 3 Selected Features: [ True False False False False  True  True False] Feature Ranking: [1 2 3 5 6 1 1 4] 

8.4 PCA 主成因分析

这个方法在机器学习实战中介绍过, 主要用来降维。 经过PCA, 以前的8个特征会转化成另外的8个特征, 而每种特征之间是正交关系, 这就意味着他们提供的信息是不相关的, 也就是没有相关性, 可以理解成都是干货。 :)

其实通过实践你可以发现, 后续的一些特征值都是0了, 其实没有那么多维度的信息。 所以后面那些自然可以省略了。

# Feature Extraction with PCA from pandas import read_csv from sklearn.decomposition import PCA # load data filename = 'pima-indians-diabetes.data.csv' names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(filename, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] # feature extraction pca = PCA(n_components=3) fit = pca.fit(X) # summarize components print("Explained Variance: %s") % fit.explained_variance_ratio_ print(fit.components_) 
Explained Variance: [ 0.889  0.062  0.026] [[ -2.022e-03   9.781e-02   1.609e-02   6.076e-02   9.931e-01   1.401e-02     5.372e-04  -3.565e-03]  [ -2.265e-02  -9.722e-01  -1.419e-01   5.786e-02   9.463e-02  -4.697e-02    -8.168e-04  -1.402e-01]  [ -2.246e-02   1.434e-01  -9.225e-01  -3.070e-01   2.098e-02  -1.324e-01    -6.400e-04  -1.255e-01]] 

8.5 特征重要性分析

对于特征重要性的评判, bagging 相关的算法可以帮忙计算。 字面翻译就是打包的一些算法, 比如随机森林, 这个是用大量的一阶的树桩, 然后根据投票选举的方式得到预测的结果。 比如Extra Trees。

在tree bagging基础上,每一个model训练的时候对所选取的data split随机选取一部分特征子集(random subset of the features)来训练。这样做的目的也是为了让学到的tree不要太相似。 进一步扩展RF算法,是一种叫extremely randomized trees,(ExtraTrees)的算法:在RF采取bagging和random subspace的基础上,进一步在每一棵树train决策树的时候,选取的split value采用随机生成. 这些算法可以帮助我们来判断特征的重要性。

那么问题来了, 他是如何来帮助我们得到特征的重要性呢。 首先它肯定可以做分类。 然后呢, 根据哪些参数可以决定结果的权重可以得到点信息, 这个还是不很理解, 需要看它的实现才行, 放到TODO 吧。

顺便说一下, 随机森林还能帮我们做缺失值的补值, 当然这个缺失值话题还是很大的, 有平均值, 补零,随机森林等等。

# Feature Importance with Extra Trees Classifier from pandas import read_csv from sklearn.ensemble import ExtraTreesClassifier # load data filename = 'pima-indians-diabetes.data.csv' names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] dataframe = read_csv(filename, names=names) array = dataframe.values X = array[:,0:8] Y = array[:,8] # feature extraction model = ExtraTreesClassifier() model.fit(X, Y) print(model.feature_importances_) 
[ 0.102  0.247  0.104  0.083  0.074  0.128  0.126  0.135] 

8.6 小结

其实这些很多是相通的, 都是特征选择的一些方式, 那么具体问题具体分析。 PCA可能略有不同。 但是这几种办法还是很有帮助的。

参考 1 http://scikit-learn.org/stable/modules/feature_selection.html 2 卡方检验 https://baike.baidu.com/item/%E5%8D%A1%E6%96%B9%E6%A3%80%E9%AA%8C/2591853?fr=aladdin&fromid=8048908&fromtitle=chi-square+test 3 http://m.blog.csdn.net/liujianfei526/article/details/51761616 4 http://blog.csdn.net/xbinworld/article/details/50450650

本文发表于2017年12月11日 22:33
(c)注:本文转载自https://my.oschina.net/sizhe/blog/1588135,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如有侵权行为,请联系我们,我们会及时删除.

阅读 2205 讨论 0 喜欢 0

抢先体验

扫码体验
趣味小程序
文字表情生成器

闪念胶囊

你要过得好哇,这样我才能恨你啊,你要是过得不好,我都不知道该恨你还是拥抱你啊。

直抵黄龙府,与诸君痛饮尔。

那时陪伴我的人啊,你们如今在何方。

不出意外的话,我们再也不会见了,祝你前程似锦。

这世界真好,吃野东西也要留出这条命来看看

快捷链接
网站地图
提交友链
Copyright © 2016 - 2021 Cion.
All Rights Reserved.
京ICP备2021004668号-1