业务需求(使用背景):
     - 实现搜索引擎前缀搜索功能(中文,拼音前缀查询及简拼前缀查询功能)
- 实现摘要全文检索功能,及标题加权处理功能(按照标题权值高内容权值相对低的权值分配规则,按照索引的相关性进行排序,列出前20条相关性最高的文章)
一、搜索引擎前缀搜索功能:
  中文搜索:
 1、搜索“刘”,匹配到“刘德华”、“刘斌”、“刘德志”
 2、搜索“刘德”,匹配到“刘德华”、“刘德志”
 3、搜索“德华”,匹配到“刘德华”
 小结:搜索的文字需要匹配到集合中所有名字的子集。
 全拼搜索:
 1、搜索“li”,匹配到“刘德华”、“刘斌”、“刘德志”
 2、搜索“liud”,匹配到“刘德华”、“刘德”
 3、搜索“liudeh”,匹配到“刘德华”
 小结:搜索的文字转换成拼音后,需要匹配到集合中所有名字转成拼音后的子集
  简拼搜索:
 1、搜索“w”,匹配到“我是中国人”,“我爱我的祖国”
 2、搜索“wszg”,匹配到“我是中国人”
 小结:搜索的文字取拼音首字母进行组合,需要匹配到组合字符串中前缀匹配的子集
   解决方案:
  方案一:将“like”搜索的字段的中、英简拼、英全拼 分别用索引的三个字段来进行存储并且不进行分词,最简单直接(倒排索引存储它们本身数据),检索索引数据的时候进行 通配符查询(like查询),从这三个字段中分别进行搜索,查询匹配的记录然后返回。(优势:存储格式简单,倒排索引存储的数据量最少。缺点:like索引数据的时候开销比较大 prefix 查询比 term 查询开销大得多)
  方案二:将中、中简拼、中全拼 用一个字段衍生出三个字段(multi-field)来存储三种数据,并且分词器filter采用edge_ngram类型对分词的数据进行,然后处理存储到倒排索引中,当检索索引数据时,检索所有字段的数据。(优势:格式紧凑,检索索引数据的时候采用term 全匹配规则,也无需对入参进行分词,查询效率高。缺点:采用以空间换时间的策略,但是对索引来说可以接受。采用衍生字段来存储,增加了存储及检索的复杂度,对于三个字段搜索会将相关度相加,容易混淆查询相关度结果)
  方案三:将索引数据存储在一个不需分词的字段中(keyword), 生成倒排索引时进行三种类型倒排索引的生成,倒排索引生成的时候采用edge_ngram 对倒排进一步拆分,以满足业务场景需求,检索时不对入参进行分词。(优势:索引数据存储简单,,检索索引数据的时只需对一个字段 采用term 全匹配查询规则,查询效率极高。缺点:采用以空间换时间的策略——比方案二要少,对索引数据来说可以接受。)
     ES 针对这一业务场景解决方案还有很多种,先列出比较典型的这三种方案,选择方案三来进行处理。
  
   准备工作:
     - pinyin分词插件安装及参数解读
- ElasticSearch edge_ngram 使用
- ElasticSearch multi-field 使用
- ElasticSearch 多种查询特性熟悉
代码:
  baidu_settings.json:
  {   "refresh_interval":"2s",   "number_of_replicas":1,   "number_of_shards":2,   "analysis":{     "filter":{       "autocomplete_filter":{         "type":"edge_ngram",         "min_gram":1,         "max_gram":15       },       "pinyin_first_letter_and_full_pinyin_filter" : {         "type" : "pinyin",         "keep_first_letter" : true,         "keep_full_pinyin" : false,         "keep_joined_full_pinyin": true,         "keep_none_chinese" : false,         "keep_original" : false,         "limit_first_letter_length" : 16,         "lowercase" : true,         "trim_whitespace" : true,         "keep_none_chinese_in_first_letter" : true       },       "full_pinyin_filter" : {         "type" : "pinyin",         "keep_first_letter" : true,         "keep_full_pinyin" : false,         "keep_joined_full_pinyin": true,         "keep_none_chinese" : false,         "keep_original" : true,         "limit_first_letter_length" : 16,         "lowercase" : true,         "trim_whitespace" : true,         "keep_none_chinese_in_first_letter" : true       }     },     "analyzer":{       "full_prefix_analyzer":{         "type":"custom",         "char_filter": [           "html_strip"         ],         "tokenizer":"keyword",         "filter":[           "lowercase",           "full_pinyin_filter",           "autocomplete_filter"         ]       },       "chinese_analyzer":{         "type":"custom",         "char_filter": [           "html_strip"         ],         "tokenizer":"keyword",         "filter":[           "lowercase",           "autocomplete_filter"         ]       },       "pinyin_analyzer":{         "type":"custom",         "char_filter": [           "html_strip"         ],         "tokenizer":"keyword",         "filter":[           "pinyin_first_letter_and_full_pinyin_filter",           "autocomplete_filter"         ]       }     }   } }
  baidu_mapping.json
  {   "baidu_type": {     "properties": {       "full_name": {         "type":  "text",         "analyzer": "full_prefix_analyzer"       },       "age": {         "type":  "integer"       }     }   } } 
  
  public class PrefixTest {      @Test     public void testCreateIndex() throws Exception{         TransportClient client = ESConnect.getInstance().getTransportClient();         //定义索引         BaseIndex.createWithSetting(client,"baidu_index","esjson/baidu_settings.json");         //定义类型及字段详细设计         BaseIndex.createMapping(client,"baidu_index","baidu_type","esjson/baidu_mapping.json");     }     @Test     public void testBulkInsert() throws Exception{         TransportClient client = ESConnect.getInstance().getTransportClient();         List<Object> list = new ArrayList<>();         list.add(new BulkInsert(12l,"我们都有一个家名字叫中国",12));         list.add(new BulkInsert(13l,"兄弟姐妹都很多景色也不错 ",13));         list.add(new BulkInsert(14l,"家里盘着两条龙是长江与黄河",14));         list.add(new BulkInsert(15l,"还有珠穆朗玛峰儿是最高山坡",15));         list.add(new BulkInsert(16l,"我们都有一个家名字叫中国",16));         list.add(new BulkInsert(17l,"兄弟姐妹都很多景色也不错",17));         list.add(new BulkInsert(18l,"看那一条长城万里在云中穿梭",18));         boolean flag = BulkOperation.batchInsert(client,"baidu_index","baidu_type",list);         System.out.println(flag);     } }
  不要意思,代码封装了,java生成索引网上查方式即可:重点不在java代码怎么实现。而是上面的思想。
  接下来查看下定义的分词器效果:
  http://192.168.20.114:9200/baidu_index/_analyze?text=刘德华AT2016&analyzer=full_prefix_analyzer
  {     "tokens": [         {             "token": "刘",             "start_offset": 0,             "end_offset": 9,             "type": "word",             "position": 0         },         {             "token": "刘德",             "start_offset": 0,             "end_offset": 9,             "type": "word",             "position": 0         },         {             "token": "刘德华",             "start_offset": 0,             "end_offset": 9,             "type": "word",             "position": 0         },         {             "token": "刘德华a",             "start_offset": 0,             "end_offset": 9,             "type": "word",             "position": 0         },         {             "token": "刘德华at",             "start_offset": 0,             "end_offset": 9,             "type": "word",             "position": 0         },         {             "token": "刘德华at2",             "start_offset": 0,             "end_offset": 9,             "type": "word",             "position": 0         },         {             "token": "刘德华at20",             "start_offset": 0,             "end_offset": 9,             "type": "word",             "position": 0         },         {             "token": "刘德华at201",             "start_offset": 0,             "end_offset": 9,             "type": "word",             "position": 0         },         {             "token": "刘德华at2016",             "start_offset": 0,             "end_offset": 9,             "type": "word",             "position": 0         },         {             "token": "l",             "start_offset": 0,             "end_offset": 9,             "type": "word",             "position": 0         },         {             "token": "li",             "start_offset": 0,             "end_offset": 9,             "type": "word",             "position": 0         },         {             "token": "liu",             "start_offset": 0,             "end_offset": 9,             "type": "word",             "position": 0         },         {             "token": "liud",             "start_offset": 0,             "end_offset": 9,             "type": "word",             "position": 0         },         {             "token": "liude",             "start_offset": 0,             "end_offset": 9,             "type": "word",             "position": 0         },         {             "token": "liudeh",             "start_offset": 0,             "end_offset": 9,             "type": "word",             "position": 0         },         {             "token": "liudehu",             "start_offset": 0,             "end_offset": 9,             "type": "word",             "position": 0         },         {             "token": "liudehua",             "start_offset": 0,             "end_offset": 9,             "type": "word",             "position": 0         },         {             "token": "l",             "start_offset": 0,             "end_offset": 9,             "type": "word",             "position": 0         },         {             "token": "ld",             "start_offset": 0,             "end_offset": 9,             "type": "word",             "position": 0         },         {             "token": "ldh",             "start_offset": 0,             "end_offset": 9,             "type": "word",             "position": 0         },         {             "token": "ldha",             "start_offset": 0,             "end_offset": 9,             "type": "word",             "position": 0         },         {             "token": "ldhat",             "start_offset": 0,             "end_offset": 9,             "type": "word",             "position": 0         },         {             "token": "ldhat2",             "start_offset": 0,             "end_offset": 9,             "type": "word",             "position": 0         },         {             "token": "ldhat20",             "start_offset": 0,             "end_offset": 9,             "type": "word",             "position": 0         },         {             "token": "ldhat201",             "start_offset": 0,             "end_offset": 9,             "type": "word",             "position": 0         },         {             "token": "ldhat2016",             "start_offset": 0,             "end_offset": 9,             "type": "word",             "position": 0         }     ] }
  大功告成。
  参考:
  http://blog.csdn.net/napoay/article/details/53907921
 https://elasticsearch.cn/question/407
 http://blog.csdn.net/xifeijian/article/details/51095762
 http://www.cnblogs.com/xing901022/p/5910139.html
 http://www.cnblogs.com/clonen/p/6674492.html
   
   
  全文检索后续有时间再进行整理。