一、前言
上一篇博客《有趣的卷积神经网络》介绍如何基于deeplearning4j对手写数字识别进行训练,对于整个训练集只训练了一次,正确率是0.9897,随着迭代次数的增加,网络模型将更加逼近训练集,下面是对训练集迭代十次的评估结果,总之迭代次数的增加会更加逼近模型(注:增加迭代次数有时也会发生过拟合,有时候也并非很奏效,具体情况具体分析)。
Accuracy: 0.9919
Precision: 0.9919
Recall: 0.9918
F1 Score: 0.9918
二、导读
1、web环境搭建
2、基于canvas构建前端画图界面
3、整合dl4j训练模型
三、web环境搭建
1、eclipse new一个Maven project ,填好maven坐标,packaging选war
<groupId>org.dl4j</groupId> <artifactId>digitalrecognition</artifactId> <version>0.0.1-SNAPSHOT</version> <packaging>war</packaging>
2、配置Jar包依赖,由于servlet-api一般由web容器提供,所以scope为provided,这样不会被打入war包里。
<dependencies> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-webmvc</artifactId> <version>4.3.4.RELEASE</version> </dependency> <dependency> <groupId>javax.servlet</groupId> <artifactId>servlet-api</artifactId> <version>2.5</version> <scope>provided</scope> </dependency> <dependency> <groupId>com.fasterxml.jackson.core</groupId> <artifactId>jackson-core</artifactId> <version>2.5.3</version> </dependency> <dependency> <groupId>com.fasterxml.jackson.core</groupId> <artifactId>jackson-annotations</artifactId> <version>2.5.3</version> </dependency> <dependency> <groupId>com.fasterxml.jackson.core</groupId> <artifactId>jackson-databind</artifactId> <version>2.5.3</version> </dependency> <dependency> <groupId>commons-fileupload</groupId> <artifactId>commons-fileupload</artifactId> <version>1.3.1</version> </dependency> <dependency> <groupId>org.deeplearning4j</groupId> <artifactId>deeplearning4j-core</artifactId> <version>0.9.1</version> </dependency> <dependency> <groupId>org.nd4j</groupId> <artifactId>nd4j-native-platform</artifactId> <version>0.9.1</version> </dependency> </dependencies>
3、为了开发方便,不用把web工程部署到外置web容器,所以在开发时用mavan tomcat插件是比较方便的。运行时mvn tomcat7:run即可
<build> <plugins> <plugin> <groupId>org.apache.tomcat.maven</groupId> <artifactId>tomcat7-maven-plugin</artifactId> <version>2.2</version> <configuration> <uriEncoding>UTF-8</uriEncoding> <path>/</path> <port>8080</port> <protocol>org.apache.coyote.http11.Http11NioProtocol</protocol> <maxThreads>1000</maxThreads> <minSpareThreads>100</minSpareThreads> </configuration> </plugin> </plugins> </build>
4、web常规配置web.xml,filter、servlet、listener这里就略去了。
四、前端canvas画图实现
1、html元素、css
<style type="text/css"> body { padding: 0; margin: 0; background: white; } #canvas { margin: 100px 0 0 300px; } #canvas>span { color: white; font-size: 14px; } #result { margin: 0px 0 0 300px; } </style> <html> <head> <title>数字识别</title> </head> <body> <canvas id="canvas" width="280" height="280"></canvas> <button onclick="predict()">预测</button> <div id="result"> 识别结果:<font size="18" id="digit"></font> </div> </body> </html>
2、js代码实现在canvas画布连线操作,并将图片转化为base64格式,ajax发送给后端,这里画布的大小是280px,所以图片到了后端,需要缩小至十分之一。
<script src="/js/jquery-3.2.1.min.js"></script> <script type="text/javascript"> /*获取绘制环境*/ var canvas = $('#canvas')[0].getContext('2d'); canvas.strokeStyle = "white";//线条的颜色 canvas.lineWidth = 10;//线条粗细 canvas.fillStyle = 'black' canvas.fillRect(0, 0, 280, 280); $('#canvas').on('mousedown', function() { /*开始绘制*/ canvas.beginPath(); /*设置动画绘制起点坐标*/ canvas.moveTo(event.pageX - 300, event.pageY - 100); $('#canvas').on('mousemove', function() { /*设置下一个点坐标*/ canvas.lineTo(event.pageX - 300, event.pageY - 100); /*画线*/ canvas.stroke(); }); }).on('mouseup', function() { $('#canvas').off('mousemove'); }); function predict() { var img = $('#canvas')[0].toDataURL("image/png"); $.ajax({ url : "/digitalRecognition/predict", type : "post", data : { "img" : img.substring(img.indexOf(",") + 1) }, success : function(response) { $("#digit").html(response); }, error : function() { } }); } </script>
整体呈现的界面如下,可以画图。

五、后端java代码
@RequestMapping("/digitalRecognition") @Controller public class DigitalRecognitionController implements InitializingBean { private MultiLayerNetwork net; @ResponseBody @RequestMapping("/predict") public int predict(@RequestParam(value = "img") String img) throws Exception { String imagePath= generateImage(img);//将base64图片转化为png图片 imagePath= zoomImage(imagePath);//将图片缩小至28*28 DataNormalization scaler = new ImagePreProcessingScaler(0, 1); ImageRecordReader testRR = new ImageRecordReader(28, 28, 1); File testData = new File(imagePath); FileSplit testSplit = new FileSplit(testData, NativeImageLoader.ALLOWED_FORMATS); testRR.initialize(testSplit); DataSetIterator testIter = new RecordReaderDataSetIterator(testRR, 1); testIter.setPreProcessor(scaler); INDArray array = testIter.next().getFeatureMatrix(); return net.predict(array)[0]; } private String generateImage(String img) { BASE64Decoder decoder = new BASE64Decoder(); String filePath = WebConstant.WEB_ROOT + "upload/"+UUID.randomUUID().toString()+".png"; try { byte[] b = decoder.decodeBuffer(img); for (int i = 0; i < b.length; ++i) { if (b[i] < 0) { b[i] += 256; } } OutputStream out = new FileOutputStream(filePath); out.write(b); out.flush(); out.close(); } catch (Exception e) { e.printStackTrace(); } return filePath; } private String zoomImage(String filePath){ String imagePath=WebConstant.WEB_ROOT + "upload/"+UUID.randomUUID().toString()+".png"; try { BufferedImage bufferedImage = ImageIO.read(new File(filePath)); Image image = bufferedImage.getScaledInstance(28, 28, Image.SCALE_SMOOTH); BufferedImage tag = new BufferedImage(28, 28, BufferedImage.TYPE_INT_RGB); Graphics g = tag.getGraphics(); g.drawImage(image, 0, 0, null); // 绘制处理后的图 g.dispose(); ImageIO.write(tag, "png",new File(imagePath)); } catch (Exception e) { e.printStackTrace(); } return imagePath; } @Override public void afterPropertiesSet() throws Exception { net = ModelSerializer.restoreMultiLayerNetwork(new File(WebConstant.WEB_ROOT + "model/minist-model.zip")); } }
代码说明:
1、InitializingBean是spring bean生命周期中的一个环节,spring构建bean的过程中会执行afterPropertiesSet方法,这里用这个方法来加载已经定型的网络。
2、generateImage是用来将前端传过来的base64串转化为png格式。
3、zoomImage方法将前端的280*280缩小至28*28和训练数据一致,并存到webroot的upload目录下。
4、predict进行预测,将转化好的28*28的图片读取出来,张量化,把像素点的值压缩至0到1,预测,最后结果是一个数组,由于只有一张图片,取数组的第一个元素即可。
六、测试,mvn tomcat7:run,浏览器访问http://localhost:8080即可玩手写数字识别了


测试结果马马虎虎,大体上实现了基本功能。
git地址:https://gitee.com/lxkm/dl4j-demo/tree/master/digitalrecognition
快乐源于分享。